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Abstract Available optimisation techniques vary widely in terms of derivation, application, and efficiency. A complex dairy farm model
was used to benchmark those which have besn used previousty in the model optimisation feld. The more traditional methods, including
random search, hill-climbing and direct search, were notably inferior in identifying the economic optimum of this agricultural system.
Genetic algorithms proved quite efficient, but overal? results were marginally down on those from the simulated annealing methods, Initially,
these proved 1o be quite stow, but 2 retuned simulated anncaling algorithm was found to be more efficient, tharongh and safe. It's extension
to simulated quenching proved best for this problem, safely identifying the optimum at a good rate of convergence. As this program is freely
available and relatively easy 1o use, it is strongly recommended. Algo, initial investigations with the tabu search sirategy are reported, which

show it to have potential.

L INTRODUCTION

The management of a dairy farm to achieve the economic
opiimum is a complex operation.  Sufficient feed must be
provided for the herd to maintain a high level of milk preduoction,
and this must be balanced against the relative costs of each. The
overall management strategy covers critical decisions such as
stocking rate, calving pattern, supplements (lype, level and
timing), fertifiser and irigation inputs, planting and grazing
strategies, and the balancing of pasture and forage areas and
species, The interacting effects of these options can only
realistically be investigated by a simulation model of the system.
An available dairy farm model was used as a te¢t case for the
oplimisation methods, with the definable management options
forming a 16-dimensional optimisation problem, Even at a course
level of resolution, there are of the order of 10" possible
combinations of management options, which is an imposing
nurnber to explore and evaluaie. Previous studies [Mayer et al,
1989] showed this problem to be of a difficult form for
opimisadon algorithms, doe to non-smeoth surfaces and
multiple optima.

The purely random search method has been included in a number
of optimisation studies [Corona ef. al. 1947, Bramletie &
Bouchard 1991, Davider 1991, Syswerda 1991], more &s a
pootly-performing  benchmark against which to compare the
more targeted methods, It cannot either theoretically or
practically be justified as a serious optimisation technigue. The
more traditional opimisation algorithms include hill-climbing
(conjugaie-gradient or quasi-Newton techmiques; and direct
search methods (the Nelderbead simplex, and complex
algorithms). In some cases [Kamr 1991, Mayer et al. 1991] these
have been shown to perform well, but in general they are inferior
to the more recently-developed optimisation {echniques. The fiest

of these, genetic aigorithms, has been demonstrated as superior o
hill-climbing methods, in terms of both speed of convergence and
values of reported optima [Bramlette & Bouchard 1991, Davidor
19911

The sacond more recent technique covers the feld of simulated
annealing and #'s exension of simulated gquenching, On iest
fonctions, Corona et al, [1987] showed simulated annealing 10
be mose efficient than the Simplex algorithm, Bramlette &
Bouchard {1991] demonstrated it as cleasly superiour to hill-
climbing, and marginaily better than a genetic algorithm, in
optinising a model of combat aircraft design, Goffe ef. al. [1994]
reported that simulated annealing found far better solutions io
economelric parameterisation problems than did either hill-
climbing or the Simplex algorithm, but that this improvement
wag at the expense of much greater computation 1w A notable
exception to this trend of simulated annealing being the best is
reparted in Styblinski & Tang [1990], where hifl-climbing
proved faster and mors accurate on a set of smooth, snimodal test
functions, This is not surprising, as these ars ihe types of
problems which conform exactly to the snderlying assumptions
of the hill-climbing methods, With problems which are more
‘real-world” in namure, hill-clirabing is generally found to be
inferior to the more robust methods.

In a comprehensive test between the more modern techniques,
Ingber & Rosen [1992] compared gemetic algorithms against
simulated annealing over a range of multi-dimensional functions.
COrverall, simulated annealing proved 1o be superiour, especially in

rms of the valnes of the identified optima, There was some
variation in these results, however, with the genetic algorithm
notably performing better than simulaled annealing on the
higher-dimensional problem.
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Figirs 1. Boxplot distributions of identified optima of the dairy farm model, by optimisation method,

These newer optimisation methods have been previcusly tested
against the more traditional algorithms, using the dairy model as
described [Mayer e, al, 1995 Fach method was replicated 50
that the total number of mode! runs was in the order of half a
mitlion, and the resultant distributions of the reporied oplima
{non-discounied farm gross margin, in dollars per annum) are
shown in Figure 1,

The ‘hybrid GA’ is a hybrid of a genetic algorith which has been
fine-tuned by incorporating a hill-climbing routine as i's final
process, o aliow this discrete method to converge fo the actual
opima in the continuous hyperspace. This extension showed
liile improvement over the basic genctic algorithm, so was aot
warranted. From this figure, it is clear that the hifl-climbing
{quasi-Mewton) and direct search (Simplex) metheds are inferior

for this particular problem. As these resulis are consistent with
others found in the lileralure, these methods were discarded from
further consideration. This paper covers a more thorough
investigation inio Lhe properties and performance of genetic
algorithms and simulated annealing, including an evaluation of
the latter’s extengion of simulated quenching,

2, GENETIC ALGORITHM (GA)

Based onr the natural selection theories of John Holland, GAs
mimic the operation of sexual reproduction botween individuals
[Davis 1991], The operational parameters are coded onto “genes’,
and over modelled generations Lhe “survival of the fittest’ rules
tend to produce successtul combinations of options, to eventually



Source Population Crossover Mutation Generation Flitism Rank Based
Size Rate Probabiity Gap

Davis [1991] 50 0.65 0.008 Yes
Bramletie and Bouchard {1991] 4-100 0.01-1 0.01-1 No
South et. al. [1993]

—  standard 50 0.60 (.001 1 Yes

- quick 30 0.95 0.01 i Yes

~ comprehensive 30 0.45 0.01 1 Yes
GENESIS defanlts 50 0.60 0.001 X MNo No
Dairy model

— ranges 40-80 0.45-0.93 0.001-0.01 0.9-1 Yes No, Yes

— optimal 40 (.60 0001 1 Yes No

Table 1. Operational parameters of the genetic algorithm (blank entries indicate rot specified).

arrive at the optimurn. This cross-mixing and searching stralegy
is very targeted and efficient, and has allowed the solution of
meore higher-dimensional problems which could not previously be
attempted [Radcliffe & Wilson 1990]. The use of GAs in real-
world applications is becoming more widespread [South et al.
1993]. Annevelink [1992] used a GA o solve a horticultural
design problem which had proved intractable with a
mathematical programming approach.

The performance of GAs is largely controlled by a number of
operational parameters. Table 1 lists the more tmporiant of these,
along with ranges suggested in the literatnre as worthy of
consideration. Also given in Table 1 are the values trialed with
the dairy model, using the Genetic Search Implementation
System (GENESIS, Version 5.0). For this investigation, elitism
was used throughout, as this guards against losing an identified
optima, and grey coding was wsed for the integer options to
protect against the effect of Hamming cliffs. Factorial analyses of
variance of these results revealed the optimal combinations of the
control parameters (as listed in Table 1), with population size,
mutation rate and the score-based selection method proving to be
the most important.

For the optimal values of these GA parameters, ali 8 replicates
converged (from a practical viewpoint) to the global optimum of
the dairy model. The rate of convergence for the best and worst of
these replicates is shown in Figure 2,

3 SIMULATED ANNEALING (S4)

SA covers an evolving family of methods which mimic the
cooling (anneating) process in metallurgy [Kirkpamrick et. al.
1983]. Originaliy based on the Bolzmann distribution
[Metropolis et. al. 1983], SA probabitistically accepts iess
successful (or backwards) steps, allowing this method to escape
areas of local optima. This probability is controlled by the
temperature schedule, and is quite high in the initial ‘searching’
stages, eventually becoming negligible in the final stages of
convergence. Whilst there Is no guarantee of finding the global
optimum, SA’s slow, thorough nature usually ensures this
[Ingber 1993]. Practical applications show it 1o be far saperior to

hill-climbing methods, in stdies on the harvest scheduling of
forestry stands [Lockwood & Moeore 1993], and in optimising
groundwater remediation strategies [Kuo et al. 1993],

Previous applications of SA to this dairying model using 'very
fast simulated reannealing’ showed it to be suceessful in always
finding the global optimusm, but taking on average 16° runs to
achieve this [Mayer et. al. 1995} An improved SA algorithm,
ASA (Adaptive Simulated Annealing Ver. 310 ; available
through e-mail from asa-request@alumni.caliech.edu) was
obtained and implemented. This uses an exponential temperature
schedule, making it doubly-exponentially faster than the original
(Bolizmarn) SA. Other improvements in ASA include the ability
10 define true integers, having control over their annealing
process, and easier controi of operational paramelers through an
options file rather than recomptiation of the C-code each time.

In ASA, many of the operational parameters are claimed to be
critical. Inigial investigations of these on a one-at-a-time basis
were confounded by the random nature of the scarch path, with
some apparent successes merely due 1o chance, A more rigorous
method s 1o replicate comparisons, and this is most efficientty
achieved with facioriat designs. A number of these factorials werc
used to investigate ranges of the more imporiant paramelers.
Somewhat surprisingly, shifis of up to a factor of 10 in either
direction from the default values had little or no effect for some,
and a detrimental effect for others, so for these the default values
were adopted, These variables (using parameter names as defined
in  the on-lne ASA documenfation) included the
initial_parameter_temperature, controlling the starting point
emperature for annealing; the temperature_annealing_scale,
which  assists in  the annealing  schedule;  the
cost_parameter_ralio_scale, which relates the cost annealing
schedule to that of the parameters; and delta_x, conzolling the
caleulation of tangents for reannealing. Also, investigations
forcing proportionately more acceptances, tending towards the
'rejectioniess annealing' approach of Ingber [1993}, performed
poorly, so thig strategy was abandoned.



100600

85000

&

e

& 90000

]

=

g_g

g

&
85G00
36000
?SODO EH T ST L H FER S S S

MNurnier of Runs

Figure 2. Raie of convergence to optimum for two replicates of the simulaled guenching (8, senetic algorithm (GA) and simulated
annealing (5A} methods.

‘The single parameier which consistendy and  significantly
{=0.01) affected performance was the lemperature ratio_scale,
which controls the rate of temperature decling, With a default of
1E-5, higher values (18-4} dlowed the search 100 much, resuling
in excessive computation required w find the optimum. Smaller
values (down t0 around 1E-10) improved the cfficiency, but
values towards the boltom of this range or lower proved
moonsistent, occasionally failing. The ‘safe’ default value was
thus adopted for the SA test runs, with the rate of convergence for
two random replicates plotted in Figure 2. It is notable that the
combined effect of these improvements resulted in convergence
ccuring in under 10% runs, which is a factor of 10 beter than
earlier 5A optimisations of this problem [Mayer et al. 1995},

4. SIMULATED QUENCHING 3Q)
8Q, alsu termed simulated tempering, is an extension of SA,

Quenching implies a more rapid conling schedule, which allows
it w be a faster or 'more greedy process. However, this also

introduces dangers - if too fast, the probability of arriving at a
suboptimal solution becomes more than negligible [Ingher 19931,
This speeding up is determined by the guenching factor {(Q),
which by recommendation is approximately the mumber of
dimensions in the problem [Ingber 1993), Fractional values can
also be used 10 slow down the cooling process, making the basic
SA process even more tharough.

A geomolric progression of () was investigated, namely valoes of
0.5, 1,2,4,8, 16, 32 and 64, These were crossed with four values
of the temperature_ratio_scale (1B-5, 1E-6, 1E-8 and 1E-10) and
two random starts (replicates) in a complete factorial design, and
results subjected to analysis of variance. This showed a
significant (P<0.01) interaction between the design variables, as
graphed in Figwe 3. Here, the best Q across the range of
temperature scales is 8, although resulis for 16 (the number of
dimensions, and expected to be optimal) were not significantly
higher. Whilst the lowest temperature scale {1E-10) appeared the
best, its results tended to be erratic and mere variable, and values
in this range proved unreliable when used for SA. Hence, the
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Figure 3. SQ runs to achieve optimal value, for a range of quenching factors and femperatare ratio scales (17,

actual best combination (Q of 8 and temperature scale of 1E-8)
was taken as approximately optimal for this problem, and the rate
of convergence for the two replicates is graphed in Figure 2.
Here, SQ’s rate of convergence is about the same as that of the
genetic algorithm. Unlike the GA, however, 5Q always
converged to the global optimam of the system, and is thus more
refiable.

These datz, along with further trials, also revealed a few failures
with "super-guenching' - of a total of 22 trial runs with  in the
range 32 to 100, 3 failed 10 identify the global optimurn. As the
rates of convergence of these ‘super-gquenching’ runs were no
better than those of the more moderaie Q values, the latter appear

appropriate.
5 TABYU (OB TABOQO) SEARCH STRATEGY
Tabu search is a metastrategy which can be applied to other

optimisation methods [Glover 1990]. It primarily involves
maintaining 2 list of recently-visited options, which are regarded

as 'taber’. This ban both prevents redundant re-gvaluations, and
also forces the search away from recentiy-investigated areas of
the hyperspace, allowing it to escape from local minima. It has
most commonly been used in conjunction with hill-climbing
atgorithms, and one such version was independently developed as
the 'stcepest ascent mildest descent method’ [Hansen & Jaomard
1990]. A wned tabg/hill-climbing method was shown fo be
marginally superier to SA on low-dimensional multiple-optima
test functions [Cvijovic & Klinowski 19935].

Our investigations of this method on the dairy model are
ongoing, and include use of the Reactive Tabu Search Code from
the University of Trento, Italv (htipi//rm.science.uniin.it).
Initially, we attempted adding a tabu list into the SQ algorithm, It
offered only marginal improvement {eg, on average 10 % fewer
runs 10 get o within 99.9 % of the optimum), and encountered
slight problems regarding convergence,



1t appearsd that the discrets nature of obtaining 4 'iabu match’
interfored with the final fine-tuning of 3Q, and these rums
terminated on average 0.01 % short of the optimum, Given also
the practical requirements of extra code and program interfaces,
and the necessary decisions over the required Jevel of
discretisation and tabu lst length and period, it appears that iis
disadvantages ootweigh the marginal improvement offered, and
its addition to 5O is not merited. This could be because 30 works
s0 well on this particular model, and resulis may well vary with
different problems or indeed oprimisation methods, In line with
lissraturs studies, it is expegted that a tebwhill climbing
algorithm will perform well, and this method is currently under
investigation,

&. DISCUSEION AND CONCLUSIONS

Simulated annealing appears 4 thorough and reliable method for
optimising simulasion models, It is wseful both in its own right,
and via its more efficient adaptation of simulated guenching,
provided the level of guenching is kept within reasonable levels.
Apart from thiz obvious facior, the rate of iemperatare decling i
the most critical control parameter, When this method s used in
5 practical sense, a range of valoes should be tried for both these
parametars.

The genetic algorithm offers a good raie of convergence, but i3
not quite as reliable in terms of the final values found, although
cortain parameter seitings inspire more confidence. With higher-
dimensional problems i may well tumm out 1o be the best
gptimisation mathod, a3 the noted inefliciencies of the simulated
annealing spproaches may become overwhelming,

On real-weorld problems, with non-smooth surfaces and muliiple
optima, either genetic algorithms or simuated  annealing
{including simulated quenching) should outperform the more
traditional optimisation methods such as hill-climbing or direct
search algorithms. Hence, cither of the former methods, with
perhaps the addition of the Tabu search strategy, are worthy of
consideration for use in pracical applications.
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